27134 measured reflections

 $R_{\rm int} = 0.041$

10066 independent reflections

8035 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[bis(2-methylphenyl)phosphanyl]methane

Omar bin Shawkataly,^a*‡ Imthyaz Ahmed Khan,^a§ H. A. Hafiz Malik,^a Chin Sing Yeap^b¶ and Hoong-Kun Fun^b‡‡

^aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: omarsa@usm.my

Received 20 December 2010; accepted 25 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.137; data-to-parameter ratio = 35.4.

In the title compound, $C_{29}H_{30}P_2$, the dihedral angles between the two substituted benzene rings to the same P atom are 88.39(7) and $83.88(9)^{\circ}$. In the crystal, molecules are arranged into columns and stacked down the b axis. Weak intermolecular C-H··· π interactions stabilize the crystal structure.

Related literature

For related structures, see: Filby et al. (2006); Lumbreras et al. (2010). For the synthesis of bis(di-o-tolylphosphino)methane, see: Filby et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

‡‡ Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Crystal data

V = 2496.0 (3) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.19 \text{ mm}^{-1}$
$T = 100 { m K}$
$0.43 \times 0.42 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min}=0.924,\;T_{\rm max}=0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ 284 parameters $wR(F^2) = 0.137$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$ S = 1.07 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 10066 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C7-C12 and C20-C25 benzene rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5A\cdots Cg1^{i}$	0.93	2.83	3.7325 (18)	164
Symmetry codes: (i) $-x$	$-v \pm 1 - \pi ($	2.70	5.0929 (18)	105

Symmetry codes: (i) -x, -y + 1, -z; (ii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5093).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Filby, M., Deeming, A. J., Hogarth, G. & Lee, M.-Y. (2006). Can. J. Chem. 84, 319-329.
- Lumbreras, E. Jr, Sisler, E. M. & Shelby, Q. D. (2010). J. Organomet. Chem. 695, 201-205,
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia

[§] Thomson Reuters ResearcherID: E-2833-2010. Current address: Department of Chemistry, Gokhale Centenary College, Ankola 581 314, NK, Karnataka, India.

[¶] Thomson Reuters ResearcherID: A-5523-2009.

Acta Cryst. (2011). E67, o289 [doi:10.1107/S1600536810054279]

Bis[bis(2-methylphenyl)phosphanyl]methane

O. bin Shawkataly, I. A. Khan, H. A. Hafiz Malik, C. S. Yeap and H.-K. Fun

Comment

Diphosphines are an important class of ligands that finds widespread use in transition metal chemistry and catalysis. A subclass of these is small bite-angle diphosphines in which the two phosphorus centers are separated only by a single atom linker unit. The small bite-angle ligand bis(di-*o*-tolylphosphino)methane is used in the synthesis of palladium complexes (Filby *et al.*, 2006; Lumbreras *et al.*, 2010).

The dihedral angles between the two substituted benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) to the same phosphine atom (P1 and P2) are 88.39 (7) and 83.88 (9)° respectively (Fig. 1). In the crystal packing, the molecules are arranged into columns and stacked down *b* axis. (Fig. 2). Weak intermolecular C—H··· π interactions (Table 1) further stabilize the crystal structure.

Experimental

All manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under dry oxygen free nitrogen. Bis(di-*o*-tolylphosphino)methane was prepared by reported procedure (Filby *et al.*, 2006). Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH₃OH into CHCl₃.

Refinement

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and $U_{iso}(H)$ = 1.2 or 1.5 $U_{eq}(C)$. Rotating group model was applied for the methyl groups.

Figures

Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.

Fig. 2. The crystal packing of the title compound, viewed down the b axis, showing the molecules stacked down the b axis.

Bis[bis(2-methylphenyl)phosphanyl]methane

Crystal data

C₂₉H₃₀P₂ $M_r = 440.47$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.2991 (5) Å b = 7.4050 (5) Å c = 40.782 (3) Å $\beta = 95.189$ (1)° V = 2496.0 (3) Å³ Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	10066 independent reflections
Radiation source: fine-focus sealed tube	8035 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
ϕ and ω scans	$\theta_{\text{max}} = 34.0^{\circ}, \ \theta_{\text{min}} = 4.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -13 \rightarrow 12$
$T_{\min} = 0.924, T_{\max} = 0.981$	$k = -11 \rightarrow 11$
27134 measured reflections	$l = -51 \rightarrow 64$

F(000) = 936

 $\theta = 4.6 - 33.8^{\circ}$

 $\mu = 0.19 \text{ mm}^{-1}$

Plate, colourless

 $0.43 \times 0.42 \times 0.10 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.172 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6549 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.137$	H-atom parameters constrained
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 0.7579P]$ where $P = (F_o^2 + 2F_c^2)/3$
10066 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
284 parameters	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{z} х y P1 0.01724 (7) 0.18382 (3) 0.27891 (4) 0.086016(7) P2 0.16377 (4) 0.13495 (5) 0.154290 (8) 0.02634 (8) C1 0.23722 (13) 0.48860 (15) 0.06551 (3) 0.01841 (19) C2 0.29605 (15) 0.0230(2) 0.64220 (16) 0.08257 (3) H2A 0.028* 0.2991 0.6448 0.1054 C3 0.35022 (16) 0.79130 (18) 0.06591 (4) 0.0285 (3) H3A 0.3887 0.034* 0.8928 0.0776 C4 0.34666 (19) 0.7880(2)0.03197 (4) 0.0342 (3) H4A 0.3834 0.8870 0.0207 0.041* C5 0.2885 (2) 0.6374 (2) 0.01471 (4) 0.0361 (3) H5A 0.2860 0.6367 -0.00810.043* C6 0.23309 (16) 0.48582 (19) 0.03092 (3) 0.0267(2)C7 -0.03857(13)0.28696 (17) 0.08034 (3) 0.0217 (2) C8 -0.11985(17)0.4501(2)0.08482(4)0.0320(3)H8A -0.06050.5535 0.0907 0.038* C9 0.0438 (4) -0.28755(19)0.4594 (3) 0.08063 (5) H9A 0.5678 0.0838 0.053* -0.3406C10 -0.37401 (17) 0.3062 (3) 0.0467 (5) 0.07174 (5) H10A 0.3115 0.056* -0.48640.0689 C11 0.1445 (3) 0.06704 (4) 0.0399 (4) -0.29677(17)H11A -0.35790.0428 0.0608 0.048* C12 0.13087 (19) 0.07148 (3) 0.0273(2)-0.12682(15)C13 0.21569 (16) 0.33585 (17) 0.13027 (3) 0.0245 (2) 0.029* H13A 0.1475 0.4370 0.1352 H13B 0.3695 0.029* 0.3277 0.1360 C14 0.34812 (18) -0.00360 (18) 0.0282 (3) 0.15611 (3) C15 0.48803 (19) 0.0451 (2) 0.14168 (4) 0.0352 (3) H15A 0.4921 0.042* 0.1566 0.1313 C16 0.6214 (2) 0.14243 (5) -0.0687(3)0.0464 (4) H16A 0.7136 -0.03310.1328 0.056* C17 0.6162 (3) -0.2354(3)0.15766 (5) 0.0492 (5) H17A 0.7045 -0.31280.1581 0.059* C18 0.4799 (3) -0.2860(2)0.17213 (4) 0.0451 (4) H18A 0.4779 -0.39780.1825 0.054* C19 0.3439(2) -0.17399(19)0.17171 (4) 0.0344(3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C20	0.1778 (2)	0.23619 (19)	0.19566 (4)	0.0360 (3)
C21	0.3219 (3)	0.2361 (2)	0.21606 (4)	0.0495 (5)
H21A	0.4140	0.1830	0.2089	0.059*
C22	0.3289 (4)	0.3153 (3)	0.24723 (5)	0.0738 (8)
H22A	0.4254	0.3143	0.2607	0.089*
C23	0.1940 (5)	0.3944 (3)	0.25798 (5)	0.0817 (10)
H23A	0.1989	0.4464	0.2788	0.098*
C24	0.0516 (4)	0.3970 (2)	0.23803 (6)	0.0698 (8)
H24A	-0.0386	0.4528	0.2455	0.084*
C25	0.0383 (3)	0.3179 (2)	0.20667 (5)	0.0476 (5)
C26	0.1731 (2)	0.3240 (2)	0.01096 (4)	0.0415 (4)
H26A	0.2340	0.2192	0.0184	0.062*
H26B	0.1865	0.3450	-0.0119	0.062*
H26C	0.0607	0.3047	0.0136	0.062*
C27	-0.04883 (19)	-0.0484 (2)	0.06702 (5)	0.0401 (4)
H27A	0.0148	-0.0813	0.0869	0.060*
H27B	0.0197	-0.0410	0.0493	0.060*
H27C	-0.1309	-0.1380	0.0619	0.060*
C28	0.1983 (3)	-0.2342 (2)	0.18810 (5)	0.0504 (5)
H28A	0.2161	-0.3540	0.1967	0.076*
H28B	0.1051	-0.2339	0.1723	0.076*
H28C	0.1806	-0.1532	0.2058	0.076*
C29	-0.1195 (3)	0.3245 (3)	0.18557 (7)	0.0634 (6)
H29A	-0.2006	0.3789	0.1977	0.095*
H29B	-0.1521	0.2041	0.1793	0.095*
H29C	-0.1067	0.3948	0.1662	0.095*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
P1	0.01554 (12)	0.01656 (13)	0.01936 (13)	0.00128 (9)	0.00012 (8)	0.00058 (9)
P2	0.03679 (18)	0.02088 (15)	0.02149 (15)	-0.00247 (12)	0.00350 (12)	0.00215 (11)
C1	0.0162 (4)	0.0182 (5)	0.0208 (5)	0.0014 (4)	0.0018 (3)	0.0014 (4)
C2	0.0241 (5)	0.0201 (5)	0.0250 (5)	0.0002 (4)	0.0038 (4)	-0.0015 (4)
C3	0.0270 (6)	0.0205 (5)	0.0387 (7)	-0.0026 (5)	0.0059 (5)	0.0002 (5)
C4	0.0359 (7)	0.0275 (6)	0.0403 (8)	-0.0046 (5)	0.0103 (6)	0.0096 (6)
C5	0.0486 (8)	0.0351 (7)	0.0249 (6)	-0.0052 (6)	0.0059 (6)	0.0076 (5)
C6	0.0310 (6)	0.0281 (6)	0.0209 (5)	-0.0033 (5)	0.0013 (4)	0.0020 (4)
C7	0.0164 (4)	0.0253 (5)	0.0237 (5)	0.0036 (4)	0.0039 (4)	0.0058 (4)
C8	0.0289 (6)	0.0316 (7)	0.0370 (7)	0.0123 (5)	0.0106 (5)	0.0081 (5)
C9	0.0287 (7)	0.0541 (10)	0.0511 (10)	0.0221 (7)	0.0167 (6)	0.0190 (8)
C10	0.0181 (6)	0.0732 (12)	0.0503 (10)	0.0098 (7)	0.0111 (6)	0.0275 (9)
C11	0.0209 (6)	0.0554 (10)	0.0430 (8)	-0.0091 (6)	0.0004 (5)	0.0179 (7)
C12	0.0188 (5)	0.0326 (6)	0.0299 (6)	-0.0043 (5)	0.0000 (4)	0.0079 (5)
C13	0.0326 (6)	0.0202 (5)	0.0204 (5)	-0.0005 (4)	0.0000 (4)	0.0021 (4)
C14	0.0431 (7)	0.0218 (5)	0.0191 (5)	0.0004 (5)	-0.0008 (5)	0.0007 (4)
C15	0.0389 (7)	0.0363 (7)	0.0293 (7)	0.0043 (6)	-0.0023 (5)	0.0083 (6)
C16	0.0424 (8)	0.0562 (11)	0.0395 (9)	0.0122 (8)	-0.0021 (7)	0.0064 (8)

C17	0.0603 (11)	0.0460 (10)	0.0387 (9)	0.0228 (9)	-0.0105 (8)	-0.0021 (7)
C18	0.0782 (13)	0.0264 (7)	0.0279 (7)	0.0123 (8)	-0.0111 (7)	-0.0009 (5)
C19	0.0600 (9)	0.0202 (5)	0.0222 (6)	0.0001 (6)	-0.0007 (6)	-0.0011 (4)
C20	0.0657 (10)	0.0208 (6)	0.0225 (6)	-0.0005 (6)	0.0102 (6)	0.0035 (5)
C21	0.0885 (14)	0.0334 (8)	0.0243 (7)	0.0016 (8)	-0.0067 (8)	-0.0027 (6)
C22	0.147 (3)	0.0442 (10)	0.0264 (8)	-0.0001 (13)	-0.0151 (11)	-0.0057 (8)
C23	0.183 (3)	0.0383 (10)	0.0264 (8)	0.0056 (14)	0.0223 (14)	-0.0045 (8)
C24	0.144 (2)	0.0280 (8)	0.0453 (11)	0.0098 (11)	0.0530 (14)	0.0054 (7)
C25	0.0845 (14)	0.0230 (6)	0.0401 (9)	0.0046 (8)	0.0322 (9)	0.0090 (6)
C26	0.0633 (10)	0.0380 (8)	0.0220 (6)	-0.0137 (7)	-0.0022 (6)	-0.0033 (6)
C27	0.0320 (7)	0.0270 (7)	0.0599 (11)	-0.0073 (6)	-0.0030 (6)	-0.0035 (7)
C28	0.0842 (14)	0.0236 (7)	0.0458 (10)	-0.0068 (8)	0.0188 (9)	0.0061 (6)
C29	0.0702 (14)	0.0477 (11)	0.0785 (16)	0.0154 (10)	0.0405 (12)	0.0136 (10)

Geometric parameters (Å, °)

P1—C1	1.8368 (12)	C15—C16	1.389 (2)
P1—C7	1.8402 (11)	C15—H15A	0.9300
P1—C13	1.8491 (13)	C16—C17	1.384 (3)
P2	1.8380 (15)	C16—H16A	0.9300
P2—C20	1.8404 (15)	C17—C18	1.375 (3)
P2—C13	1.8532 (13)	C17—H17A	0.9300
C1—C2	1.3981 (17)	C18—C19	1.399 (2)
C1—C6	1.4080 (17)	C18—H18A	0.9300
C2—C3	1.3922 (18)	C19—C28	1.500 (3)
C2—H2A	0.9300	C20—C21	1.394 (3)
C3—C4	1.382 (2)	C20—C25	1.415 (3)
С3—НЗА	0.9300	C21—C22	1.396 (3)
C4—C5	1.382 (2)	C21—H21A	0.9300
C4—H4A	0.9300	C22—C23	1.371 (4)
C5—C6	1.4013 (19)	C22—H22A	0.9300
C5—H5A	0.9300	C23—C24	1.373 (4)
C6—C26	1.508 (2)	С23—Н23А	0.9300
C7—C12	1.3982 (19)	C24—C25	1.402 (3)
C7—C8	1.4037 (18)	C24—H24A	0.9300
C8—C9	1.388 (2)	C25—C29	1.502 (4)
C8—H8A	0.9300	C26—H26A	0.9600
C9—C10	1.374 (3)	C26—H26B	0.9600
С9—Н9А	0.9300	C26—H26C	0.9600
C10-C11	1.380 (3)	С27—Н27А	0.9600
C10—H10A	0.9300	С27—Н27В	0.9600
C11—C12	1.4093 (18)	С27—Н27С	0.9600
C11—H11A	0.9300	C28—H28A	0.9600
C12—C27	1.495 (2)	C28—H28B	0.9600
C13—H13A	0.9700	C28—H28C	0.9600
С13—Н13В	0.9700	С29—Н29А	0.9600
C14—C15	1.396 (2)	С29—Н29В	0.9600
C14—C19	1.4150 (19)	С29—Н29С	0.9600
C1—P1—C7	101.29 (5)	C17—C16—C15	119.57 (18)

C1—P1—C13	103.45 (5)	C17—C16—H16A	120.2
C7—P1—C13	99.71 (6)	С15—С16—Н16А	120.2
C14—P2—C20	101.95 (7)	C18—C17—C16	119.76 (17)
C14—P2—C13	103.71 (6)	С18—С17—Н17А	120.1
C20—P2—C13	99.16 (6)	С16—С17—Н17А	120.1
C2—C1—C6	119.09 (11)	C17—C18—C19	121.80 (16)
C2—C1—P1	123.29 (9)	C17—C18—H18A	119.1
C6—C1—P1	117.30 (9)	C19—C18—H18A	119.1
C3—C2—C1	121.06 (12)	C18—C19—C14	118.78 (16)
С3—С2—Н2А	119.5	C18—C19—C28	119.95 (15)
C1—C2—H2A	119.5	C14—C19—C28	121.27 (15)
C4—C3—C2	119.74 (13)	C21—C20—C25	119.57 (16)
С4—С3—НЗА	120.1	C21—C20—P2	121.78 (14)
С2—С3—НЗА	120.1	C25—C20—P2	118.65 (15)
C5—C4—C3	119.95 (13)	C20—C21—C22	120.4 (2)
С5—С4—Н4А	120.0	C20—C21—H21A	119.8
C3—C4—H4A	120.0	C22—C21—H21A	119.8
C4—C5—C6	121.37 (14)	C23—C22—C21	120.2 (3)
С4—С5—Н5А	119.3	C23—C22—H22A	119.9
С6—С5—Н5А	119.3	C21—C22—H22A	119.9
C5—C6—C1	118.79 (12)	C22—C23—C24	120.04 (19)
C5—C6—C26	119.24 (13)	C22—C23—H23A	120.0
C1—C6—C26	121.97 (12)	С24—С23—Н23А	120.0
C12—C7—C8	119.90 (12)	C23—C24—C25	121.8 (2)
C12—C7—P1	120.11 (9)	C23—C24—H24A	119.1
C8—C7—P1	119.99 (10)	C25—C24—H24A	119.1
C9—C8—C7	120.98 (16)	C24—C25—C20	118.0 (2)
С9—С8—Н8А	119.5	C24—C25—C29	120.1 (2)
С7—С8—Н8А	119.5	C20—C25—C29	121.89 (17)
C10-C9-C8	119.04 (15)	C6—C26—H26A	109.5
С10—С9—Н9А	120.5	С6—С26—Н26В	109.5
С8—С9—Н9А	120.5	H26A—C26—H26B	109.5
C9—C10—C11	121.03 (13)	C6—C26—H26C	109.5
C9—C10—H10A	119.5	H26A—C26—H26C	109.5
C11-C10-H10A	119.5	H26B—C26—H26C	109.5
C10-C11-C12	121.08 (16)	C12—C27—H27A	109.5
C10-C11-H11A	119.5	С12—С27—Н27В	109.5
C12—C11—H11A	119.5	H27A—C27—H27B	109.5
C7—C12—C11	117.96 (14)	С12—С27—Н27С	109.5
C7—C12—C27	122.89 (11)	H27A—C27—H27C	109.5
C11—C12—C27	119.14 (14)	H27B—C27—H27C	109.5
P1—C13—P2	108.26 (7)	C19—C28—H28A	109.5
P1—C13—H13A	110.0	C19—C28—H28B	109.5
P2—C13—H13A	110.0	H28A—C28—H28B	109.5
P1—C13—H13B	110.0	C19—C28—H28C	109.5
P2—C13—H13B	110.0	H28A—C28—H28C	109.5
H13A—C13—H13B	108.4	H28B—C28—H28C	109.5
C15—C14—C19	118.38 (14)	С25—С29—Н29А	109.5
C15—C14—P2	124.06 (11)	С25—С29—Н29В	109.5

C19—C14—P2	117.48 (12)	H29A—C29—H29B	109.5
C16-C15-C14	121.71 (15)	С25—С29—Н29С	109.5
C16—C15—H15A	119.1	H29A—C29—H29C	109.5
C14—C15—H15A	119.1	H29B—C29—H29C	109.5
C7—P1—C1—C2	106.29 (10)	C14—P2—C13—P1	82.71 (7)
C13—P1—C1—C2	3.31 (11)	C20—P2—C13—P1	-172.51 (8)
C7—P1—C1—C6	-80.18 (10)	C20—P2—C14—C15	-102.79 (13)
C13—P1—C1—C6	176.84 (9)	C13—P2—C14—C15	-0.14 (14)
C6—C1—C2—C3	-0.01 (18)	C20-P2-C14-C19	80.55 (12)
P1-C1-C2-C3	173.42 (10)	C13—P2—C14—C19	-176.80 (10)
C1—C2—C3—C4	-0.3 (2)	C19—C14—C15—C16	-0.2 (2)
C2—C3—C4—C5	0.4 (2)	P2-C14-C15-C16	-176.83 (13)
C3—C4—C5—C6	-0.3 (2)	C14—C15—C16—C17	0.4 (3)
C4—C5—C6—C1	0.1 (2)	C15-C16-C17-C18	-0.6 (3)
C4—C5—C6—C26	-179.09 (16)	C16-C17-C18-C19	0.6 (3)
C2—C1—C6—C5	0.10 (18)	C17—C18—C19—C14	-0.4 (2)
P1-C1-C6-C5	-173.72 (11)	C17—C18—C19—C28	-179.46 (17)
C2—C1—C6—C26	179.24 (14)	C15-C14-C19-C18	0.2 (2)
P1-C1-C6-C26	5.43 (18)	P2-C14-C19-C18	177.07 (11)
C1—P1—C7—C12	137.48 (10)	C15-C14-C19-C28	179.22 (15)
C13—P1—C7—C12	-116.57 (11)	P2-C14-C19-C28	-3.92 (19)
C1—P1—C7—C8	-42.34 (12)	C14—P2—C20—C21	15.95 (15)
C13—P1—C7—C8	63.60 (11)	C13—P2—C20—C21	-90.27 (14)
C12—C7—C8—C9	0.1 (2)	C14—P2—C20—C25	-164.84 (11)
P1—C7—C8—C9	179.92 (12)	C13—P2—C20—C25	88.93 (12)
C7—C8—C9—C10	-0.5 (2)	C25—C20—C21—C22	0.3 (3)
C8—C9—C10—C11	0.1 (3)	P2-C20-C21-C22	179.50 (15)
C9—C10—C11—C12	0.6 (3)	C20-C21-C22-C23	-0.2 (3)
C8—C7—C12—C11	0.59 (19)	C21—C22—C23—C24	-0.4 (4)
P1-C7-C12-C11	-179.24 (11)	C22—C23—C24—C25	0.9 (3)
C8—C7—C12—C27	-178.62 (14)	C23—C24—C25—C20	-0.9 (3)
P1-C7-C12-C27	1.55 (19)	C23—C24—C25—C29	-179.73 (19)
C10-C11-C12-C7	-0.9 (2)	C21—C20—C25—C24	0.2 (2)
C10-C11-C12-C27	178.31 (16)	P2-C20-C25-C24	-178.99 (12)
C1—P1—C13—P2	179.41 (6)	C21—C20—C25—C29	179.07 (16)
C7—P1—C13—P2	75.22 (7)	P2-C20-C25-C29	-0.1 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C12 $$	and C20-C25 1	benzene rings, resp	pectively.	
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C5—H5A···Cg1 ⁱ	0.93	2.83	3.7325 (18)	164
C28—H28A···Cg2 ⁱⁱ	0.96	2.76	3.6929 (18)	165
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) x , $y-1$, z .				

Fig. 2